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Configurational statistics of a disordered polymer chain 

S P Obukhov 
L D Landau Institute for Theoretical Physics, USSR Academy of Sciences, Moscow, USSR 

Received 3 December 1985 

Abstract. A problem of the configurational properties of a long flexible polymer chain 
with a quenched disorder is considered. The chain is assumed to be randomly constructed 
from monomers of two different kinds with different constants for the two-body interaction. 
Near the theta point, i.e. when the average interaction of monomers is small, the spatial 
correlation of the repulsive and attractive monomers of different kinds leads to an increase 
of effects of the disorder on large scales. There is also the competing effect of the repulsive 
three-body interaction which tends to screen the effects of disorder on large scales. For 
both effects the upper critical dimension is d ,  = 3. A solution of the renormalisation group 
equation indicates that there always exists a critical scale at which the relative dispersion 
of sizes of polymers with different random sequences of monomers becomes of the order 
of unity. The magnitude of this critical scale depends strongly on the re!ation between the 
constant which characterises the dispers iy  of the two-pody interaction Bo and the constant 
of the repulsive three-body interaction V,. If B,,<&V, at each physically attainable scale 
the effects of screening are prevalent and the dispersion of sizes of polymers with different 
sequences of monomers is small near the theta point. If the reverse inequality holds, the 
dispersion of sizes becomes of the order of unity near the theta point. 

The overwhelming majority of all polymer molecules in nature-DNA molecules and 
nuclei molecules-are non-homogeneous. This causes the variety of their unique 
physical and chemical properties. Recent investigations have shown no evidence for 
any special regularity in the sequences of monomers along the DNA or nuclei molecules, 
so that from a statistical point of view these sequences can be considered as random 
ones. 

Even if, in principle, the configurational properties of a chain with a certain fixed 
sequence of monomers can be calculated, one still encounters the problem of how to 
average these quantities over a set of polymers with different sequences. The technical 
difficulty is how to average the logarithm of the partition function of a random chain 
and its various derivatives over the randomness. 

This problem is reminiscent of the averaging procedure problem in solid state 
disordered systems (spin glasses). But, while in solid state systems randomness is fixed 
on a lattice, in the case of polymers randomness is fixed on the flexible chain which 
can move freely with two- and three-body interactions in physical space. 

We start with the simple Flory mean-field theory in order to evaluate the effect of 
randomness in linear polymers. Later, we shall calculate the first-order corrections to 
the dispersion of the two-body interaction due to the space correlations of repulsive 
and attractive elements. It turns out that near the theta point, corrections are logarithmic 
at d,  = 3. Then we shall present a functional integral formalism which allows one to 
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use renormalisation group techniques to take into account, near the theta point, both 
the effects of randomness and repulsive three-body interaction, and to calculate the 
critical scale at which the effects of randomness become of the order of unity. We 
shall then briefly discuss the coil-to-globe transition of disordered linear polymers. 

For the sake of simplicity, we consider a set of polymer chains of fixed length N 
which are randomly constructed from only two different kinds of monomers of unit 
length which only differ in their interactions. In the general case these elements can 
differ in their length too. But this only leads to small fluctuations of the total length 
of different polymers and can easily be taken into account. As to the interaction 
constants, it will be clear from further consideration why only the randomness in 
two-body interaction constant is relevant. For two types of monomers there are three 
different two-body interaction constants: gll ,  g12, gZ2. They can be written in the form 

g, = g + U(&, + E,) + WE,&, (1) 

where 

1/2p1 if the ith monomer is of the first kind 
= { 1 / 2 p 2  if the  ith monomer is of the second kind. 

Here p 1  and p2 are the relative densities of each kind of monomer ( p l  + p2 = l ) ,  so the 
average ( E , ) , ,  over all polymers vanishes. Below, we shall suppose that p1 = p2 = and 
E ,  = +l. We can now estimate the dispersion of sizes of polymers of length N with 
different compositions. Following Flory (1971) the free energy of a polymer coil of 
size R can be written as a sum of an ‘elastic’ term and terms which describe the two- 
and three-body interactions: 

R’ N ’  N 3  
N R RZd  

F=--+E,+V- 

where the ‘mean’ two-body interaction constant 2 can be written as 

E = g + uO( 1/ N + WO( 1/ N ). ( 2 b )  

The minimisation of ( 2 a )  with respect to R, subject to condition ( 2 b ) ,  allows one to 
estimate the typical variation of sizes of different polymers. At the theta point 

-- S R  v - ( 2 + d ) / ( 2 + 2 d )  N ( d - 3 ) / ( 2 + 2 d )  

R 

and far from the theta point 

6R U 1 
R g NI / ’  

d s 4  ___- 

where R is the mean-field size of the polymer 

R -  NI/‘ d 2 3  

R - ~ - 1 / ( 2 + 2 d ) ~ Z / ( l + d )  d < 3  

d < 3  
(3) 

(4) 
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at the theta point and 

far from the theta point. 
From ( 2 b )  it follows that the effect of randomness is always small, except maybe 

the theta point case at d = 3. 
In spite of its simplicity, the Flory approximation appears to give accurate estimates 

of exponents of power dependences for polymer problems (de Gennes 1976, Isaacson 
and Lubensky 1980). However, it usually fails in the vicinity of the upper critical 
dimension ( d  S d,)  of the examined problem (Obukhov 1984). In this case a rigorous 
RG consideration is necessary. For the problem of the random chain the upper critical 
dimension is d, = 3 ,  which can be seen from the average magnitude of the two-body 
interaction term in ( 2 a )  and ( 2 b )  in the theta region. It is of the order of uN3”/Rd,  
i.e. u N ( ~ - ‘ ) ’ ~  for an unperturbed polymer coil with R - NI’*. For d > 3 this term is 
negligible in equation ( 2 a )  for large polymer length, but for d S d,  = 3 it becomes 
relevant. 

From the point of view of the Flory theory there are two apparently different 
problems: (i)  there is the problem of fixed length polymers which are constructed 
randomly from two kinds of monomers and (ii) there is also the problem of polymers 
with fixed numbers of monomers of each kind, but with different ordering of these, 
monomers. In this case the above consideration would not predict any variation of 
sizes of different polymers. This, however, is incorrect. Indeed, the repulsive and 
attractive monomers situated in the middle of a chain and near its endpoint have 
different environments, and the total effect cannot be expressed only through their 
mean interaction, which is zero. Later on we shall consider this case in more detail. 

Now we shall consider the effect of spatial fluctuations in the non-homogeneous 
polymer. The first-order correction to the bare coupling constant g ,  is given by figure 
l (a) .  

l a  I 
I b l  

Figure 1. ( a )  The first-order correction to g , J .  The broken lines are the interactions g ,  and 
g k l .  Because ( g k l ) a v  = 0, the average value of this correction vanishes. ( b )  The correction 
to g t .  Here the independent integrations over p and p‘  must be carried out. The average 
(gkgk,I , )av is non-vanishing only if some of the indices k, I, k‘, I ‘  coincide. 
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It can be written as 

where Gil(x) is a Gaussian correlator of a random walk of length I i  - I \ .  For future 
purposes it is more convenient to use its momentum representation Gil(p)  = 
exp( - i p 2 / i  - 11). It is evident that at the theta point ( g  = 0) the correction of figure 
l ( a )  averaged over all possible polymer sequences vanishes as ( g k l ) a v  = 0. But for each 
particular polymer, the correction of figure 1( a )  has its own particular value, and the 
dispersion of interaction between monomers i and j increases due to this correction. 
This can be considered as an effective increase of the U term in the interaction gij (see 
figure l ( h ) ) :  

1 1 
= constant x g t  C ( g k I g k , I , )  

k lk ’ l ’  ( I j -  kl+(i-ll)d’2 ( I j -  k’l+li-l’l)d’2’ 

From ( 1 )  it follows that ( g  = 0) 

( g k l g k ’ l ’ ) a v  = U’( 8 k k ’ +  8 k l ’ +  81k’+  8Il’) + w 2 ( a k k ’ a l l ’ +  a k l ’ a l k ’ ) .  

Thus as d G 3 there is a divergent term in (8): 

(U’))’ In N d = 3  
(U’)* N 3 - d  d < 3 .  (9) 

At d s 2 the divergent corrections from the w terms also appear. 
It is well known for a homogeneous polymer chain that near the theta point the 

three-body interaction must be taken into account, and for this problem d, = 3 .  Hence 
the effects of randomness must be consisdered simultaneously with the effects of 
three-body interactions. We shall do this using a conformal space functional integral 
method proposed by Edwards (1966) (see also Kholodenko and Freed 1983, Freed 
and Kholodenko 1983). 

The generating functional for the non-homogeneous polymer chain problem can 
be written in the form 

= 1 Dr exp( - H { r ) )  (10) 
r ( O ) = O  

where 

+ _v loN loN loN d7  dT’ dT” S( r( T )  - r (  ~ ’ ) ) 8 (  I (  T )  - r( 7”)) 

- 

3! 

(11 )  dR h ( R ) S (  r (  N )  - R ) .  

We introduce here the continuous variables T, T’ . . . , instead of the discrete i, j ,  . . . , ones. 
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One end of a polymer chain is assumed to be fixed at the origin of the coordinates 
and the location of the other one is controlled by the field h ( R ) .  The correlation 
function of a polymer chain is 

The mean square distance between the endpoints of a polymer can be written as? 

where p is the Fourier variable conjugate to R. We are interested in quantities which 
are averaged over all possible sequences of monomers. This problem of averaging 
In Z over the randomness can be reduced to the problem of averaging the partition 
function using the replica trick: 

(In Z)av = ( l / n )  lim ln(Zn)av. 
n-0 

Here 2" can be understood as the partition function of n identical polymer chains 
with one fixed sequence of monomers. The averaging of Z "  can be done in a 
straightforward way: 

r 
(z")av= J exp(-H{r,}) n ~ r ,  

r , ( O ) = O  Q = l  

with H {  r , }  as a 'homogeneous' n-chain Hamiltonian: 

Here Bo = f u 2 ,  Vb = V - 6Bo. It should be noted here that the structure of the Bo and 
Vb terms is quite similar and differs only in replica indices. 

A calculation of arbitrary configurational and thermodynamical properties of an 
individual polymer, averaged over all polymers, can be expressed in terms of the 
averaged correlation function 

where a is an arbitrary replica index. 

t(. .) means the average over all configurations of one polymer (thermal average) and (. . 
over all polymers. 

the average 
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All these properties are the same as for a homogeneous polymer chain with the 
Hamiltonian 

x JON loN d.r dT' 6( r, ( 7 )  - r, (7')) + - '' JON JON JON dT dr '  dT" 
3! 

on the RHS of (16) is equal to -jl (GT(0))av dT (in the limit of n =0 )  where G,(R) is 
a correlation function of part of a chain of length T. The main contribution to this 
integral comes from the region of small T, i.e. it is determined by the microscopical 
properties of the model. Summarising this consideration, we conclude that for mean 
values of physical quantities (not their dispersion) the disorder in a polymer chain 
amounts to a certain shift of the mean two- and three-body interactions to the repulsion 
and attraction domain, respectively. All the dispersions in thermal averages are closely 
connected with the non-diagonality of the Hamiltonian (15) in replica indices. Of 
utmost importance for physical applications is a calculation of the dispersion of 
thermally averaged sizes of polymers with different sequences. This can be written as 

The first-order diagram contributing to D((  R2)) is shown in figure 2.  The momentum 
presentation is used. The Bo term is indicated on figure 2 by two vertices in pQ and 
p p  physical spaces. In each vertex the momentum conservation rule holds. The wavy 
lines present the - J 2 / a p 2  operators. The integration should be carried over T,  T ' ,  T" 

and p Q ,  p,. After a simple calculation we get 

D ( ( R 2 ) )  = N 2 (  T+4)I:Bo I, = 1 1 8 ~ ~ ' ~ .  (18) 
The main contribution in (18)  comes from the large scale region where p , ,  p p  - N-I. 
Thus the first-order correction to Bo, (9), and other higher-order corrections must be 
taken into account. We can do this using the renormalisation method described in 
detail by Kholodenko and Freed (1983) for the problem of a homogeneous polymer. 
It consists of introducing the arbitrary length scale L >> 1 instead of a microscopic one, 
and in calculating the renormalised coupling constants which characterise the observed 
macroscopic quantities on the length scale L. The renormalisation group equation can 
be obtained by expanding the partition function (14) up to the second order in powers 
of Bo, Vh which are dominant interactions in the theta region. Then the diagrams 
contributing to the renormalised coupling constants must be calculated. One of them 
is the same as in figure 1 (  b )  (here the notation must be changed from i,J, k, . . . , to 
7, T' ,  T", . . .). The combinatorial factors in the diagrams are obtained by considering 
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Figure 2. The first-order term in D ( ( R 2 ) ) .  (a) and ( p )  correspond to two different replica 
spaces. The momentum representation is used and the wavy line is the second derivative 
over the momentum, a2/ap2. 

all possible orderings of T, T', T", . . . . The RG equations for renormalised constants B, 
V' are ( d  = 3 ) :  

dB/d(=  6412B2- 1613BV' 
(19) 

dV' /d(= -2213( 

where 

I * =  1 / 8 r 3  I3  = 1 / 1 6 r 2  ( = l n  L. 

The solution of equation (15) is 

* % 
V=- 

1 + 22 V0( 

where 

&=-[(l+& 1 
3 CO l1I3  - 1 1  

22 vo 
and 

Q =  13Vt = I,B. 

This solution can be understood as follows. There always exists the critical scale 
L-e'c at which the charge B diverges, but the value of this critical scale depends 
strongly on the relationship between the initial values of and g, as follows. 
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(a)  If Bo > $Po, the effect of screening of randomness due to the repulsive three- 
body interaction is negligible and the divergence of B can be seen, in principle, for a 
long enough polymer. 

( b )  If a reverse inequality holds, the critical scale becomes astronomically large, 
and at each physically reliable scale the effects of screening are prevalent: 

B = Bo(l +22P05)-*’”. (22) 

If we take into account the higher-order corrections to B and to (R’), equation (18) 
can be rewritten in the formt 

So far we have only considered the case where the effects of a two-body interaction 
are negligible: g << N-’ ’2 .  If the opposite inequality holds, the renormalisation can be 
made only up to the scale R*-(N*)1’2- l /g .  On the larger scale, the two-body 
interaction is dominant and the mean-field considerations (4) and (6) can be applied 
in terms of renormalised units of size R* containing N* monomers with a renormalised 
randomness E and a renormalised three-body interaction constant. This consideration 
can be carried out only when the scale R* is less than the critical one: R* < L, - etc. 
The qualitative description in the case where R* > L, can be based on the assumption 
that L, remains a characteristic scale where the effects of correlations of attractive and 
repulsive units are important, and due to this assumption, on scales larger than L, the 
chains of blobs of size L, can be considered within the framework of the mean-field 
approximation. From (3)-(6) we obtain ( d  = 3 ) :  

and 

where 

If the number of monomers of each kind is fixed (case ii) the additional constraint 
XE, = 0 or 1; E (  T )  d i  = 0 must be satisfied throughout the calculations. In this case 
it is more convenient to calculate the dispersion (17) first using the unaveraged partition 
function 2“:  

The average of (26) with E ( T )  as a random variable with ( E ( T ) E ( T ’ ) ) , , = ~ ( T - T ’ )  

reproduces equation (18). The constraint 50” E ( T )  dT= 0 can be taken into account by 
substituting E ( T )  by E ’ ( T ) - ( ~ / N ) ~ J ?  E ’ ( + )  dT1 in (26), with ( E ’ ( T ) E ‘ ( T ‘ ) ) , ~ =  S ( T - 7 ‘ ) .  
Then we obtain instead of (18): 

(27) D((  Rz)) = NZ( 7i -$)I:Bo . 

+ There are also terms containing higher orders of B which contribute to D ( ( R 2 ) ) .  They do not change the 
point of singularity 6, of D((R?) .  
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This is more than two orders of magnitude less than in case (i). The above constraint 
only refers to the polymer chain as a whole, whereas on any scale which is smaller 
than the maximal one the chain can be considered as a random one and the RG 

equations remain the same. In this case the analogue of equation (23), with multiplier 
7~ -7 instead of 7~ + 4, can be written. If the polymer is long enough, so that B diverges 
at a certain critical length, the qualitative description (24) and (25) is valid. 

These results for the coil to the globe transition region are shown schematically in 
figure 3. Figure 3 (a )  presents the mean-field prediction of dependence of (R’ )  against 
mean interaction g.  The dispersion of (R’) in case (i)  is shown by a broken curve. If 
the number of monomers of different kinds is fixed (case ii) and the polymers are 
distinguished only by ordering of these monomers, by virtue of the Flory theory there 
is no dispersion at all (full curve). 

the effects of randomness are screened by repulsive three-body interactions for any 
physically attainable length of a polymer (figure 3( b)). If the opposite inequality holds, 
the dispersion of sizes for long polymer ( N  > Lf) chains becomes of the order of one 

The RG results are shown in figures 3(b) and ( c ) .  If disorder is weak, 

( c  1 

9 

Figure 3. ( a )  The Flory theory prediction for (R2) against g (full curve) and its dispersion 
(the area in between the broken curves). If the number of monomers of different kind is 
fixed, the mean is as above, whereas the dispysio? vanishes by virtue of the mean-field 
theory. (b,  c)  RG theory predictions: ( b )  if AVo> Eo. the eff:cts Of disorder are screened 
by repulsive three-body interactions (equation (22)); (c)  if A V o <  Bo the dispersion of sizes 
for long enough polymer chains ( N  > Lz) becomes of the order of one near the theta point 
( I g i i  N - ” 2 ) .  
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near the theta point (figure 3 ( c ) ) .  The same pattern is retained if the number of 
monomers of different kinds is fixed, the only difference being that in this case the 
dispersion on figure 3 ( b )  is smaller due to the numerical factor in (27). Remarkably, 
the mean values for a set of polymers are the same as that for a certain homogeneous 
polymer chain, and that could hold despite the divergence of dispersions in the former 
case. 
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